Thermal Conduction in Simulated Galaxy Clusters

نویسنده

  • K. DOLAG
چکیده

We study the formation of clusters of galaxies using high-resolution hydrodynamic cosmological simulations that include the effect of thermal conduction with an effective isotropic conductivity of 1/3 the classical Spitzer value. We find that, both for a hot (Tew ≃ 12 keV) and several cold (Tew ≃ 2 keV) galaxy clusters, the baryonic fraction converted into stars does not change significantly when thermal conduction is included. However, the temperature profiles are modified, particularly in our simulated hot system, where an extended isothermal core is readily formed. As a consequence of heat flowing from the inner regions of the cluster both to its outer parts and into its innermost resolved regions, the entropy profile is altered as well. This effect is almost negligible for the cold cluster, as expected based on the strong temperature dependence of the conductivity. Our results demonstrate that while thermal conduction can have a significant influence on the properties of the intra–cluster medium of rich galaxy clusters, it appears unlikely to provide by itself a solution for the overcooling problem in clusters, or to explain the current discrepancies between the observed and simulated properties of the intra– cluster medium. Subject headings: conduction — cosmology: theory — galaxies: clusters — methods: numerical

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Models of Galaxy Clusters with Thermal Conduction

We present a simple model of hot gas in galaxy clusters, assuming hydrostatic equilibrium and energy balance between radiative cooling and thermal conduction. For five clusters, A1795, A1835, A2199, A2390 and RXJ1347.5-1145, the model gives a good description of the observed radial profiles of electron density and temperature, provided we take the thermal conductivity κ to be about 30% of the S...

متن کامل

Conduction and Turbulent Mixing in Galaxy Clusters

We discuss hydrostatic models of galaxy clusters in which heat diffusion balances radiative cooling. We consider two different sources of diffusion, thermal conduction and turbulent mixing, parameterized by dimensionless coefficients, f and αmix, respectively. Models with thermal conduction give reasonably good fits to the density and temperature profiles of several cooling flow clusters, but s...

متن کامل

Anisotropic Thermal Conduction and the Cooling Flow Problem in Galaxy Clusters

We examine the long-standing cooling flow problem in galaxy clusters with 3D MHD simulations of isolated clusters including radiative cooling and anisotropic thermal conduction along magnetic field lines. The central regions of the intracluster medium (ICM) can have cooling timescales of ∼ 200 Myr or shorter—in order to prevent a cooling catastrophe the ICMmust be heated by some mechanism such ...

متن کامل

Thermal Instability in Clusters of Galaxies with Conduction

We consider a model of galaxy clusters in which the hot gas is in hydrostatic equilibrium and maintains energy balance between radiative cooling and heating by thermal conduction. We analyze the thermal stability of the gas using a Lagrangian perturbation analysis. For thermal conductivity at the level of ∼ 20 − 40% of Spitzer conductivity, consistent with previous estimates for cluster gas, we...

متن کامل

Regulation of Thermal Conductivity in Hot Galaxy Clusters by Mhd Turbulence

The role of thermal conduction in regulating the thermal behavior of cooling flows in galaxy clusters is reexamined. Recent investigations have shown that the anisotropic Coulomb heat flux caused by a magnetic field in a dilute plasma drives a dynamical instability. A long standing problem of cooling flow theory has been to understand how thermal conduction can offset radiative core losses with...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004